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Solidification in the one-dimensional model for a disordered
binary alloy under diffusion?
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Abstract. The propagation of the solidification front of a binary alloy growing from its melt is studied
by Monte-Carlo simulation and by analytical approximation methods. The simulation shows that in the
one-phase region the alloy grows steadily with a velocity controlled solely by kinetics. In the two-phase
region, the previously reported anomaly for the diffusionless growth is removed by the diffusion of atoms
and the diffusional t1/2 growth law is confirmed at least in the range where the diffusionless process is
slower than diffusion. We cannot rule out, however, that the anomaly occurring in the diffusionless case
persists even under diffusion, when the diffusionless growth asymptotically is faster than a typical diffusion
process. The Monte-Carlo simulations are compared with an approximate analytical description ignoring
correlations between the components.

PACS. 81.10.-h Methods of crystal growth; physics of crystal growth – 66.30.Dn Theory of diffusion and
ionic conduction in solids – 05.40.+j Fluctuation phenomena, random processes, and Brownian motion

1 Introduction

The growth of a binary alloy from its melt is controlled
not only by the temperature but also by the concentration
of the mother phase, and novel aspects appear in compari-
son to a single-component system. In the usual treatment
of solution growth one considers the diffusional redistri-
bution of components and assumes linear kinetics at the
interface such that the growth rate is proportional to the
deviation of the concentration at the interface from its
equilibrium value. Here we consider the microscopic prob-
lem of a disordered AB-alloy [1–3]. Each species of atoms
can change its state from liquid to solid during solidifi-
cation as the interface between the phases is advancing
towards the liquid. Without allowing for diffusion, the po-
sitions of the atoms however are assumed to be fixed, so
that no rearrangement can occur. This corresponds to a
very rapid solidification, as, for example, achievable dur-
ing the formation of metallic glasses. The transition prob-
abilities of this process of an advancing interface should
reproduce the equilibrium phase diagram with three re-
gions; the solid, the liquid and the two-phase coexistence,
as shown in Figure 1. If the initially liquid melt is sud-
denly cooled down to a temperature corresponding to the
solid one-phase region for the corresponding relative AB-
concentration, the stable solid grows steadily with a con-
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stant speed. The situation changes if the melt is cooled
down into the two-phase coexistence region of the cor-
responding equilibrium phase-diagram. The process then
becomes unsteady with time-dependent growth rate. The
spatial regions of the alloy with concentrations close to
the solidus line can solidify but the other parts with con-
centrations close to the liquidus line react as an obstacle
to the solidification front and stop the solidification front.
Thus the propagation of the solidification front becomes
pinned by the fluctuations in the concentration.

Previously we studied the front propagation in the
one-dimensional system when the atomic configuration is
quenched, i.e. without allowing for a rearrangement of
atoms. We found that in the two-phase region the inter-
face does not grow steadily but shows an anomalous time
dependence [4].

The interface position, h, varies like tν1 as a function of
time t with an exponent ν1 which depends on the concen-
tration. In a two-dimensional system with one-dimensional
interface, similar asymptotics is found for a quenched sys-
tem in the limit of the large energy of kink formation and
finite width of the system [5]. The anomalous behavior is
explained by relating the present model to the randomly
directed walk [6–12]. A similar relation is also found re-
cently for the driven ratchets [13].

In reality, however, atoms are not completely quenched
but are moving and the concentration follows the diffu-
sion law. The natural question then is how the diffusion
affects the motion of the interface. We address this ques-
tion by the Monte-Carlo simulation of the one-dimensional
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Fig. 1. Phase diagram of an ideal solution.

system and compare the results with an approximate anal-
ysis which neglects the correlations in the concentration
distribution. We found that if the growth is controlled by
the diffusion of the alloy atoms, the anomalous propaga-
tion of the interface crosses over to the t1/2 law in the two-
phase region, at least for the situation, where the quenched
system would grow with a smaller exponent than the dif-
fusion exponent ν1 < 1/2. In the one-phase region on the
other hand steady growth is obtained and controlled al-
ways by the kinetics of the advancing interface.

2 Model

We consider a binary alloy system composed of atomic
species of A and B, and denote the concentration of B
atoms by c. Each atom can be either in solid or liquid
state. The pure A(B) system solidifies at the temperature
TA(TB) with the specific latent heat LA(LB). We assume
that the A and B atoms mix ideally. There is no mixing
energy but only a mixing entropy. Then the equilibrium
phase diagram is obtained with the solidus line CS(T ) and
the liquidus line CL(T ) as

CS(T ) =
1− e−µA/T

e−µB/T − e−µA/T
,

CL(T ) =
(1− e−µA/T )e−µB/T

e−µB/T − e−µA/T
· (1)

Here the chemical potential difference between the liquid
and the solid state for a pure A-atom system is given as
µA = LA(1−T/TA) and the corresponding expression for
µB. Temperature T is measured in units of energy.

At a sufficiently high temperature the system with con-
centration c is completely molten in the liquid phase. By
cooling the system into the solid one-phase region or into
the two-phase coexistence region it starts to solidify. We
consider here the simplest case of a one-dimensional sys-
tem, noting that it remains relevant also for the higher-
dimensional cases [5] in certain parameter-ranges. Every

lattice site on the chain is occupied by an atom of either
A or B species. We introduce the state variable ni which
assumes the value zero or unity according to whether the
site i is occupied by an A or B atom respectively. The
average of ni over the whole lattice sites L should be the
given concentration c:

c =
1

L

L∑
i=1

ni. (2)

On this chain we assume a single interface which separates
the solid and liquid phases, for example, solid to the left
and liquid to the right. The interface position h is defined
then as the lattice site of the rightmost solid atom. It can
be either a species of A or B. If it melts the interface-
height decreases by one: h→ h− 1. If the liquid atom to
the right of the interface solidifies, the interface advances
by one: h → h + 1. The interface motion is assumed to
take place stochastically following the master equation

∂P (h, t)

∂t
= W (h+ 1→ h)P (h+ 1, t)

− [W (h→ h+ 1) +W (h→ h− 1)]P (h, t)

+ W (h− 1→ h)P (h− 1, t) (3)

where P (h, t) is the probability that the interface is at a
site h at time t. The transition probabilities W depend on
the atomic configurations around the interface. We con-
sider a model where the transition probability W depends
only locally on the type of particle which changes its state
during melting or solidification. If the solid site h is occu-
pied by an X (= A or B) atom and the liquid site h + 1
by a Y (= A or B) atom, the transition probability of the
interface advancement is given as

W (h→ h+ 1) = w+Y (4)

and that of the interface retardation as

W (h→ h− 1) = w−X . (5)

The detailed balance condition requires that the kinetic
ratio w−X/w+X should be equal to the one exp(−µX/T )
determined by the thermodynamics:

w−X

w+X
= e−µX/T (6)

where X = A or B.
If the interface motion is so fast that there is no time

for the atomic configurations to change while the interface
traverses the whole system, the configuration can be re-
garded as being quenched. In reality the atoms are moving
and the configuration changes according to the diffusion
law;

∂Q({n}, t)

∂t
=
∑
δ=±1

WD(n′i, n
′
i+δ → ni, ni+δ)Q({n′}, t)

−
∑
δ=±1

WD(ni, ni+δ → n′i, n
′
i+δ)Q({n}, t) (7)



X. Feng et al.: Solidification in the one-dimensional disordered alloy under diffusion 665

where Q({n}, t) is the probability to find the atomic con-
figuration {n} at a time t. The configurations {n′} are
different from the configurations {n} by the exchange of
states at the site i and its neighbor i+δ. Here we assume a
simple diffusion such that the transition probabilities WD

are constant and equal to the diffusion coefficient. In prin-
ciple the diffusion coefficient in the solid, DS, is different
from that of liquid DL. In this paper two typical cases are
considered: the symmetric diffusion where DS = DL, and
the one-sided diffusion where DS = 0.

3 Monte-Carlo simulation

The motion of the interface is simulated by the Monte-
Carlo method. In the simulation, in principle, all the
atoms in the chain have the possibility to move stochasti-
cally but the influence upon the interface motion is local-
ized within the diffusion lengthDS(L)/v near the interface,
when the interface is moving with the instantaneous ve-
locity v. In the two-phase region the asymptotic velocity
is expected to vanish but within our simulation time less
than 105 one obtains a finite velocity. In order to save
computing time we allow the diffusion of atoms within
ranges of lS and lL from the interface in the solid and liq-
uid phases respectively which are chosen sufficiently larger
than the diffusion lengths.

The simulation proceeds as follows. Let the interface
be located at a site h between a solid X and a liquid Y
atom, where both X and Y can be either of type A or B.
After the time increment of ∆t = 1/(w−X+w+Y +DSlS+
DLlL), the interface advances forward with a probability
∆tw+Y , it recedes backward with a probability ∆tw−X ,
and one of the solid (liquid) atoms in the range lS (lL)
from the interface exchanges its position with its neighbor
solid (liquid) atom with a probability ∆tDS (∆tDL).

Parameters are chosen to be the same as those in
the previous work [4] for comparison; TA = 0.9, TB =
0.1, LA/TA = LB/TB = 1, T = 0.5 and w+A = w+B = 1.
Thus the equilibrium concentrations are CS = 0.310 and
CL = 0.690, and the melting probabilities are w−A =
e−0.8 = 0.4493, and w−B = e0.8 = 2.226. The new param-
eters in the present study are the diffusion constants DS

and DL. They are chosen as DS = DL = 1 for the sym-
metric diffusion and DS = 0, DL = 1 for the one-sided dif-
fusion. The system size is chosen such that it is sufficiently
larger than the displacement of the interface. The range
of diffusion is chosen in the largest case as lS = lL = 1500.

From the simulation we calculate the interface
mean displacement 〈h(t)〉 and its variation σ(t) ≡√
〈(h(t)− 〈h(t)〉)2〉. Here 〈A〉 means the sample average

of the quantity A over at least 100 samples simulated.
Their time variations are shown in Figure 2 in the case
with the symmetric diffusion and in Figure 3 in the case
with the one-sided diffusion.

They depend on time asymptotically in power laws;
〈h(t)〉 ∼ tν1 and σ(t) ∼ tν2 . The estimated exponents ν1

and ν2 are shown in Figure 4. In the diffusionless case
(DS = DL = 0) [4] our model can be mapped to the
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Fig. 2. Time evolution of (a) the interface position 〈h(t)〉
and (b) its width σ(t) for the symmetric diffusion model. Two
straight solid lines represent the asymptotic behavior with ex-
ponent 1 and 1/2.

directed random walk with a waiting time distribution
for forward interface jumps F (τ) ∼ τ−(1+γ) with γ =
1.25 ln(c−1−1), where the exact behavior of ν1 and ν2 are
known [6–12]

ν1 = 2ν2 = 1 for 0 < c < c2 = 0.168,

ν1 = 1, 2ν2 = 3− γ for c2 < c < CS ,

ν1 = ν2 = γ for CS < c < 0.5. (8)

These exact results for the diffusionless growth are also
shown in Figure 4 as solid and dashed lines.

In the diffusionless growth the exponent ν2 in-
creases anomalously above 1/2 in the concentration range
c2 < c < c3 = 1/(1 + e0.4) ≈ 0.401 due to the strong
pinning effect of B atoms. With diffusion the anomalous
increment of the interface width seems to be healed such
that ν2 becomes closer to 1/2. The reason might be that
the large cluster of B atoms which pins the solidifica-
tion front will be resolved by the diffusion of B atoms.
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Fig. 3. Time evolution of (a) the interface position 〈h(t)〉
and (b) its width σ(t) for the one-sided diffusion model. Two
straight solid lines represent the asymptotic behavior with ex-
ponent 1 and 1/2.

Close to c = 0.5 the exponent ν2 seems to remain smaller
than 1/2 even with diffusion as in the case without diffu-
sion. Concerning the exponent ν1 for the mean displace-
ment one can observe that it takes the value close to 1/2
in the region c3 < c < 0.5 and remains larger than 1/2 in
the region CS < c < c3 at least in our time limited simu-
lations. This result can be understood by the approximate
analysis in the next section if the growth is controlled by
the diffusion.

4 Coarse-grained description
of the diffusion-limited solution growth

Temkin [3] derived effective diffusion equations and the
boundary conditions for the averaged concentration fields
cL(x, t) and cS(x, t) in the frame of reference of the moving
interface. Those equations have been derived by neglecting
the correlations of the concentrations in different spatial
points such that c(x, x′, t) = c(x, t)c(x′, t) where c(x, t)
is the probability to find atom B at the position x and
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Fig. 4. Exponent ν1 for the interface position and ν2 for its
width versus the B-atom concentration c for (a) symmetric
diffusion model and (b) one-sided diffusion model. Solid and
dashed lines are the exact diffusionless behaviors of ν1 and ν2,
respectively. The symbol dots and stars represent the estimated
ν1 and ν2 from the Monte-Carlo simulation with diffusion, re-
spectively.

time t; c(x, x′, t) is the probability to find atoms B at the
positions x and x′ at the same time t. The equations are [3]

∂cS(x, t)

∂t
= De

S

∂2cS

∂x2
+ v

∂cS(x, t)

∂x
for x ≤ 0

∂cL(x, t)

∂t
= De

L

∂2cL

∂x2
+ v

∂cL(x, t)

∂x
for x ≥ 0 (9)

where the interface velocity is v(t) = d〈h(t)〉/dt;

De
S(L) = DS(L) +

1

2

[
w+A + (w+B − w+A)cL(0, t)

+ w−A + (w−B − w−A)cS(0, t)
]

(10)
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are the effective diffusion coefficients which differ from the
usual diffusion coefficients DS and DL due to the interface
fluctuations. The initial distribution of components is uni-
form and random, cS(L)(x, 0) = c and cS(L)(x, x

′, 0) = c2.
Far from the interface the concentration is kept to c of the
mother phase:

cS(−∞, t) = cL(∞, t) = c. (11)

The velocity of the solid-liquid interface is kinetically de-
termined as the difference of the solidification and the
melting rate:

v(t) = w+A + (w+B − w+A)cL(0, t)

− w−A − (w−B − w−A)cS(0, t). (12)

Also the material conservation at the interface relates the
flux of B atoms at the interface as

vcL(0) +De
L

∂cL

∂x
= vcS(0) +De

S

∂cS

∂x
= w+BcL(0)− w−BcS(0). (13)

If the steady state 〈h(t)〉 = vt is realized (0 < c < CS),
∂cS(L)/∂t = 0 and we obtain the velocity

v =
w+Aw+B − cw+Aw−B − (1− c)w−Aw+B

cw+A + (1− c)w+B
· (14)

The value is determined only by the kinetics (w±A,B)
and agrees with the exact velocity for the diffusionless
growth [1].

The front velocity (14) remains finite only in the one-
phase solid region but it vanishes at the solidus line CS .
In the two-phase region the steady growth with a finite
velocity is impossible and it follows from this sets of equa-
tions (9–13) that the interface moves asymptotically in
proportion to t1/2 [3]. For an arbitrary time we can nu-
merically integrate the set of equations (9–13) and obtain
the motion of the interface 〈h(t)〉. Time dependence of
the interface position obtained by numerical integration
is compared with that obtained by Monte-Carlo simula-
tion in Figure 5. For example for the symmetric diffusion
model (DS = DL = 1) at the concentration c = 0.35 in
Figure 5a the numerical integration gives a position 〈h(t)〉
in excellent quantitative agreement with the Monte-Carlo
result. A similar quantitative agreement is found for both
the one-sided diffusion model and the symmetrical model
at the concentration c = 0.40 as shown in Figure 5b and d.
At the concentration c = 0.50 for the symmetrical model
the interface does not move in average 〈h(t)〉 = 0. For the
one-sided model the Monte-Carlo data for the initial in-
terface motion still agree with numerical integration with
the effective diffusion coefficients. However, for larger time
the data agree with the numerical integration with bare
diffusion constants, DS = 0 and DL = 1, rather than that
with the effective ones, De

S and De
L, as shown in Figure 5e.

For the one-sided diffusion model at c = 0.35 in Fig-
ure 5c, the Monte-Carlo data still agree with numerical
integration during some initial time but we observe a de-
viation increasing in time, and even bigger deviations from

the results obtained with bare diffusion constants. So far
from these data for c = 0.35 and our long but limited sim-
ulation times we cannot make a clear statement if the ex-
ponent ν1 approaches to the diffusionless value ν1 ≈ 0.77
or the diffusional value ν1 = 1/2, or even some other non-
trivial value! We will come back to this point in the con-
clusion.

The given effective description does not take into ac-
count the correlation of concentration between different
spatial points. Indeed those correlations are absent in the
initial distribution of atoms in our chains and their for-
mation requires some time. We think that this explains
the fact that all our Monte-Carlo data agree well with the
results based on the effective equations for the small time
where nontrivial correlations have not yet built up.

It is clear that correlations become smaller with an
increase of the diffusion coefficients and thus the time
when the deviation from the correlationless description
starts should increase. Qualitatively we can see this ef-
fect from the different data for c = 0.35. Agreement for
the symmetrical model (DS = DL = 1, Fig. 5a) holds
for all our simulation time while for the one-sided model
(DS = 0, DL = 1, Fig. 5c) the increasing deviation can be
observed already at t ∼= 103.

The other parameters which affect the correlations are
(w+B − w+A) and (w−B − w−A). The correlations (to-
gether with two-phase region) disappear when both pa-
rameters are zero. We have performed the Monte-Carlo
simulations without diffusion for two sets of the parame-
ters w+B = w+A = 1 , w−B = 1/w−A = 2.226 , c = 0.35
(Fig. 6a) and w+B = w+A = 1 , w−B = 1/w−A = 1.4,
c = 0.435 (Fig. 6b). The parameters are so chosen that
the exponents ν1 of the interface position in the above
two diffusionless cases are the same and are around 0.77

from the formula ν1 = ln

(
1− c

c

)
/ ln(w−B) [8]. In the

second case the parameter (w−B − w−A) is smaller and
one can see that the deviation of the Monte-Carlo data
from the effective description starts later. It is interesting
to note that even without diffusion the initial behavior
can be described by the system of effective diffusion equa-
tions with diffusion coefficients which come only from the
interface fluctuations.

For the two-phase region in the long-time asymptotics
the system goes to equilibrium (even without diffusion)
and correlations decay. However, the asymptotic behavior
of the interface velocity which also goes to zero still de-
pends on these small correlations. For example for c = 0.5
the dependence 〈h(t)〉 on t deviates substantially from the
dependence calculated without correlations. It seems that
the asymptotic behavior can be described by bare diffu-
sion constants rather than by effectives ones (Fig. 5e). We
think that the correlations renormalize the effective dif-
fusion coefficients back to the bare ones. The description
with bare diffusion constants should exactly correspond
to the system without interface fluctuations. As can be
seen from the Figure 2 and Figure 3 the variation σ(t)
for c = 0.5 grows slower than t1/2 which means that the
interface fluctuations are indeed small.
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Fig. 5. The interface position h(t) calculated by the analytical approximation with effective diffusion coefficients De
S and De

L

(solid lines) and bare diffusion coefficients DS and DL (dashed lines) compared with the Monte-Carlo results (symbols) for (a-b)
symmetric diffusion and (c-e) one-sided models. Concentrations are (a) c = 0.35, (b) c = 0.40,(c) c = 0.35, (d) c = 0.40, and (e)
c = 0.50.

5 Conclusion

We study the propagation of the solidification front of the
AB binary alloy growing from its melt in a one dimen-
sional model, which should remain relevant also in more
realistic two and three-dimensional systems within certain
parameter-ranges [5]. The Monte-Carlo simulation shows
that in the one-phase region the alloy grows steadily with
a velocity controlled solely by kinetics. In the two-phase
region the observed anomaly for the diffusionless growth
is cured by the diffusion of atoms and the t1/2 growth
law is confirmed at least in the range of concentration
0.401 = c3 < c < 0.5. We can quantitatively explain this
behavior by an approximate analytical treatment leading
to two types of bare and effective diffusion coefficients.

Because of the limited simulation time we can only
suggest two possible scenarios for the general long time

asymptotic behavior 〈h(t)〉 of the interface movement. The
first scenario is that in the two-phase region the behavior is
governed by an effective diffusion equation (Eqs. (9–13)).
For arbitrary but non-zero bare diffusion constants DS

and DL the interface position 〈h(t)〉 obeys the following
time-dependence. For a point exactly on the solidus or
liquidus line (see also [14]) one obtains:

〈h(t)〉 ∼ t2/3 for c = CS(L).

Inside the two-phase region we have the usual diffusion
law

〈h(t)〉 ∼ t1/2 for CS < c < CL,

within this scenario. The concentration point c∗ where
solidification is replaced by melting is [3]

c∗ = (CS
√
De
S + CL

√
De
L)/(

√
De
S +

√
De
L).
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Fig. 6. The interface position 〈h(t)〉 calculated by the dif-
fusionless Monte-Carlo simulations (symbols) and by the nu-
merical integration with effective diffusion coefficients De
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L = 1 (solid lines). Concentrations are (a) c = 0.35 and (b)

c = 0.435.

We note that this point c∗ in general differs from the cor-
responding point c0 for the diffusionless process,

c0 = ln

(
w+A

w−A

)
ln

(
w+Aw−B

w−Aw+B

)
·

For our choice of parameters w, c0 = 1/2 coincides
with c∗ for the symmetrical diffusional model. This sce-
nario is based on the solution of the effective equations
(9–13) where the effective diffusion coefficients are renor-
malized by correlation effects. This is in agreement with
Figures 5a, b, d and e, but in some disagreement with
the long-time behavior seen in Figure 5c (and the cor-
responding value of ν1 in Fig. 4b for the concentration
c = 0.35). We should remark that this scenario does not re-
produce the limiting case of the diffusionless process where
〈h(t)〉 ∼ tν1 .

The second scenario is that the asymptotics with dif-
fusion would not be slower than that without diffusion,

meaning
〈h(t)〉 ∼ tν1 for ν1 > 1/2

and
〈h(t)〉 ∼ t1/2 for ν1 < 1/2

with ν1 being the anomalous exponent of diffusionless
growth. Unfortunately, however, we have no explicit ana-
lytical explanation at hand for this second scenario other
than the argument, that the faster of two processes run-
ning in parallel wins (in contrast to two processes in series,
where the slower one is rate-controlling). This second sce-
nario has some support from the long-time behavior of
Figure 5c, and the corresponding Figure 4b for the con-
centration c = 0.35, indicating that the otherwise nice
agreement of the simulation results with scenario one may
be lost for very long simulation times in these parameter
ranges. In order to understand which of these scenarios
is correct for the diffusional process or if still some other
nontrivial exponents can appear in the range where the
diffusionless exponent is ν1 > 1/2, further numerical and
analytical efforts will be necessary.
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